1 以下の問に答えよ。

- ① $\log_{100} 1$ ② $\log_5 \sqrt{2} + \frac{1}{2} \log_5 \frac{25}{12} \frac{3}{2} \log_5 \frac{1}{\sqrt[3]{6}}$ ③ $\log_4 5 \cdot \log_5 8$
- $\textcircled{\$} \quad \log_2 10 \cdot \log_5 10 (\log_2 5 + \log_5 2) \qquad \textcircled{\$} \log_{16} (\sqrt{5 + \sqrt{24}} \sqrt{5 \sqrt{24}} \)$
- $a^{-\log_a x}$
- (2) ① $\log_{\frac{1}{2}}3$, $\log_{\frac{1}{2}}5$, -2 ② \log_49 , \log_925 , 1.5の大小を不等号を用いて表せ。
- (3) $a = \log_2 3$, $b = \log_2 5$ とするとき,① $\log_4 45$ ② $\log_{20} 80$ を a,b で表せ。
- - 6⁵²は何桁の整数か。
 - ② $\frac{1}{(\sqrt{2})^{25}}$ を小数で表したとき、小数第何位に初めて0でない数字が現れるか。
 - ③ 不等式 $\left(\frac{1}{3}\right)^n$ <0.0001 を満たす最小の整数 n を求めよ。
 - ④ 2.25^n の整数部分が 3 桁であるような整数 n の値を求めよ。

	(1)	1	2		3	
		4	5		6	
	(2)	1				
		2				
	(3)	1		2		
	(4)	1		2		
		3		4		

2 1 枚で70% の花粉を除去できるフィルターがある。99.99% より多くの花粉を一度に除去するには、このフィルターは最低何枚必要か。ただし、log₁₀3 = 0.4771とする。

③ 関数 $y = (\log_3 x)^2 - 4\log_3 x + 3$ $(1 \le x \le 27)$ の最大値,最小値を求めよ。また,そのときの x の値を求めよ。

4 次の方程式,不等式を解け。

- (1) $\log_3(3x-1) = 2.5$
- (2) $\log_{\frac{1}{3}}(x-1) > 1$
- (3) $\log_{10}(x+2)(x+5) = 1$

- (4) $\log_2(3-x) = \log_4(2x+18)$
- (5) $2\log_{0.1}(x-1) < \log_{0.1}(7-x)$
- (6) $\log_2(1-x) + \log_2(3-x) < 1 + \log_2 3$
- (7) $(\log_{\frac{1}{2}} x)^2 \log_{\frac{1}{4}} x = 0$
- (8) $(\log_{\frac{1}{3}} x)^2 + \log_{\frac{1}{3}} x^2 15 > 0$

(1)	(2)	
(3)	(4)	
(5)	(6)	
(7)	(8)	

5 連立方程式 $\begin{cases} \log_{10} x + \log_{10} y = 2 \\ x + y = 25 \end{cases}$ を解け。

| 6 x>0, y>0, x+2y=8 のとき, $\log_{10}x+\log_{10}y$ の最大値を求めよ。

 $\fbox{7}$ $\log_{10}1.4=0.146$, $\log_{10}1.8=0.255$, $\log_{10}2.1=0.322$ とするとき, $\log_{10}2$, $\log_{10}3$, $\log_{10}7$ の値を求めよ。また, $\log_{10}63$ の値を求めよ。