- 1 次の関数の最大値と最小値を求めよ。また、そのときのxの値を求めよ。
 - (1) $y = 2\sin x \cos 2x$ $\left(-\frac{\pi}{2} \le x \le \frac{\pi}{2}\right)$
- (2) $y = 2\sin\theta \cos 2\theta \quad (0 \le \theta < 2\pi)$
- (3) $y = \sin^2 x + 2\sqrt{3} \sin x \cos x + 3\cos^2 x$ $(0 \le x < 2\pi)$
- 解答 (1) $x = \frac{\pi}{2}$ で最大値 3, $x = -\frac{\pi}{6}$ で最小値 $-\frac{3}{2}$
 - (2) $\theta = \frac{\pi}{2}$ のとき最大値 3 ; $\theta = \frac{7}{6}\pi$, $\frac{11}{6}\pi$ のとき最小値 $-\frac{3}{2}$
 - (3) $x = \frac{\pi}{6}$, $\frac{7}{6}\pi$ で最大値 4, $x = \frac{2}{3}\pi$, $\frac{5}{3}\pi$ で最小値 0

- 2 次の関数の最大値,最小値を求めよ。(1), (2) については,そのときの x の値も求めよ。
 - $(1) \quad y = \sin x \cos x \quad (0 \le x < 2\pi)$
- (2) $y = \sin x + \sqrt{3}\cos x$ $(0 \le x \le \pi)$
- $(3) \quad y = -\sin x + \cos x \quad (0 \le x < 2\pi)$
- (4) $y = \sin 2x \sqrt{3}\cos 2x \ (0 \le x < \pi)$
- (5) $y = 3\sin\theta + \sqrt{3}\cos\theta$ $(0 \le x < 2\pi)$
- 解答 (1) $x = \frac{3}{4}\pi$ で最大値 $\sqrt{2}$, $x = \frac{7}{4}\pi$ で最小値 $-\sqrt{2}$
 - (2) $x = \frac{\pi}{6}$ で最大値 2, $x = \pi$ で最小値 $-\sqrt{3}$
 - (3) $x=\frac{7}{4}\pi$ で最大値 $\sqrt{2}$, $x=\frac{3}{4}\pi$ で最小値 $-\sqrt{2}$
 - (4) $x = \frac{5}{12}\pi$ で最大値 2, $x = \frac{11}{12}\pi$ で最小値 -2
 - (5) $\theta = \frac{\pi}{3}$ のとき最大値 $2\sqrt{3}$, $\theta = \frac{4}{3}\pi$ のとき最小値 $-2\sqrt{3}$

- 3 関数 $y=2\sin x\cos x (\sin x + \cos x) + 3$ について
 - (1) $\sin x + \cos x = t$ として, $y \in t$ で表せ。
 - (2) tのとりうる値の範囲を求めよ。
 - (3) yの最大値と最小値を求めよ。

解答 (1) $y=t^2-t+2$ (2) $-\sqrt{2} \le t \le \sqrt{2}$ (3) 最大値 $4+\sqrt{2}$,最小値 $\frac{7}{4}$