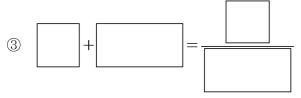
1 <相互関係>

<u>(1)</u>	+	_	
Œ.	'		



 $\boxed{2}$ <単位円上での $\sin heta$, $\cos heta$, an heta の役割と図形的意味>

1	単位円上で $\cos heta$ は	座標を表す。	よって図で表すと	線	象で、とり得る範囲は	$\leq \cos \theta \leq$	

② 単位円上で $\sin \theta$ は 座標を表す。よって図で表すと		線で、と	り得る範囲は		$\leq \sin \theta \leq $	
--	--	------	--------	--	--------------------------	--

③ 単位円上で
$$an heta$$
 は を表す。 $an heta$ は $au =$ 上をすべて動くので、とり得る範囲は 全て

3 <加法定理>

< 2倍角の公式 $> 2\theta = \theta + \theta$ と加法定理で作れる公式

①
$$\sin 2\theta =$$

$$2 \cos 2\theta =$$

$$\cos 2\theta =$$

$$\cos 2\theta =$$

$$3 \tan 2\theta =$$

<計算スペース>

 $\lceil 5 \rceil < \cos^2 heta$ 、 $\sin^2 heta$ を $\cos 2 heta$ に置き換え>

① $\cos 2\theta = 1 - 2\sin^2\theta$ を変形して、

 $\sin^2 \! heta =$

② $\cos 2\theta = 2\cos^2 \theta - 1$ を変形して、

 $\cos^2 \theta =$

 $\boxed{6}$ <半角の公式> $\boxed{5}$ の①、②の θ を $\frac{\theta}{2}$ に置き換えるとできる公式

 $\boxed{7}$ <3倍角の公式> $3\theta = \theta + 2\theta$ と加法定理で作れる公式

- ① $\sin 3\theta =$
- $2 \cos 3\theta =$

<計算スペース>

)番 名前(

)組(