数学Ⅲ ~無限等比数列が収束する条件~
公開日:
:
最終更新日:2021/06/16
数学Ⅲ
数学Ⅲ、無限等比数列が収束する条件の例題と問題です。
無限等比数列が収束する条件は、公比rがー1<r≦1のときです。
-1<r<1とする人が相当多いので気を付けましょう!
迷った場合は、7つ場合分けして確かめておきましょうね。
あと、分母がプラスかマイナスかわからない場合は、解説動画のように場合分けするか、分母の値を2乗して(2乗するとプラスだから)不等式全体に掛けると解くことができます。
解説動画
スポンサードリンク
関連記事
-
-
数学Ⅲ 複素数平面 ~1のn乗根~
数学Ⅲ、複素数平面の1のn乗根の例題と問題です。 分母の数字をnとしたときに、n乗してやれば
-
-
数学Ⅲ 複素数平面 ~極形式~
数学Ⅲ、複素数平面の極形式に変形する例題と問題です。 極形式は複素数平面において重要な役割を
-
-
数学Ⅲ 複素数平面 ~複素数の乗法・除法~
数学Ⅲ、複素数平面の複素数の乗法・除法の例題と問題です。 絶対値を2つにわけれるので、それを
-
-
数学Ⅲ 複素数平面 ~三角形の形状①~
数学Ⅲ、複素数平面の三角形の形状①の例題と問題です。 角の大きさと同じで、γ-α/β-αを求
-
-
高校数学 解説動画 数学Ⅲ 微分 yの2乗をxで微分
ここでは、陰関数の微分に使う 「yの2乗をxで微分する」ことから説明します。  
-
-
数学Ⅲ ~和で表された数列の極限~
数学Ⅲ、和で表された数列の極限の例題と問題です。 基本的にΣ(シグマ)記号を扱っていきます。
-
-
数学Ⅲ 複素数平面 ~三角形の形状②~
数学Ⅲ、複素数平面の三角形の形状②の例題と問題です。 最初にβの2乗で全体を割るのがポイント
-
-
数学Ⅲ 複素数平面 ~w=1/zが描く図形~
数学Ⅲ、w=z分の1が描く図形の例題と問題です。 図をかき、式で表して、変形、代入という順番
-
-
高校数学 問題検索 数学Ⅲ 微分 「陰関数(円・楕円・双曲線)の微分」
㊟問題文をクリックしてください! 解説動画のリンクが別枠で開きます(`・ω・´) &nb
-
-
数学Ⅲ 複素数平面 ~三角形の形状③~
数学Ⅲ、複素数平面の三角形の形状③の例題と問題です。 今回は3文字ある上に、変形が少しややこ
- PREV
- 数学Ⅲ ~和で表された数列の極限~
- NEXT
- 数学Ⅲ ~漸化式の極限② 分数型漸化式~