数学Ⅲ ~漸化式の極限② 分数型漸化式~
公開日:
:
数学Ⅲ
数学Ⅲ、漸化式の極限の例題と問題です。
今回は、分数型の漸化式を扱います。
ポイントは、an≠0を示しておくことです。
それによって、逆数をとるという操作ができるようになります。
置き換えと同様、逆数をとると、戻す(もう一度逆数をとる)という操作が加わるので、忘れないようにしましょう。


解説動画
スポンサードリンク
関連記事
-
-
数学Ⅲ 複素数平面 ~1のn乗根~
数学Ⅲ、複素数平面の1のn乗根の例題と問題です。 分母の数字をnとしたときに、n乗してやれば
-
-
数学Ⅲ ~漸化式の極限①~
数学Ⅲ、漸化式の極限の例題と問題です。 今回は、特性方程式型の漸化式の極限を調べます。
-
-
数学Ⅲ 複素数平面 ~w=1/zが描く図形~
数学Ⅲ、w=z分の1が描く図形の例題と問題です。 図をかき、式で表して、変形、代入という順番
-
-
数学Ⅲ 複素数平面 ~絶対値と2点間の距離~
数学Ⅲ、複素数平面の絶対値と2点間の距離の例題と問題です。 簡単なのでサクッと解いていきまし
-
-
数学Ⅲ 複素数平面 ~角の大きさと面積~
数学Ⅲ、複素数平面の角の大きさと面積の例題と問題です。 γ-α/β-αを計算し、極形式で表す
-
-
数学Ⅲ 複素数平面 ~一直線と垂直~
数学Ⅲ、複素数平面の一直線と垂直の例題と問題です。 虚部が0になれば、実数だけ残るので一直線
-
-
高校数学 解説動画 数学Ⅲ 微分 導関数の定義
今回から、高校数学のメインテーマである微分について学んでいきます。 数学Ⅱでも使えるので、必要
-
-
数学Ⅲ 複素数平面 ~複素数の点の移動② 図形~
数学Ⅲ、複素数平面の点の移動②の例題と問題です。 今回は正三角形になる複素数を求めていきます
-
-
数学Ⅲ ~場合分けによる極限~
数学Ⅲの場合分けによる極限の例題と問題です。 無限等比数列において、公比が文字rで表されている
-
-
数学Ⅲ 複素数平面 ~極形式~
数学Ⅲ、複素数平面の極形式に変形する例題と問題です。 極形式は複素数平面において重要な役割を
- PREV
- 数学Ⅲ ~無限等比数列が収束する条件~
- NEXT
- 数学Ⅲ ~漸化式の極限③ 誘導型漸化式~

