数学Ⅲ ~無限等比数列が収束する条件~
公開日:
:
最終更新日:2021/06/16
数学Ⅲ
数学Ⅲ、無限等比数列が収束する条件の例題と問題です。
無限等比数列が収束する条件は、公比rがー1<r≦1のときです。
-1<r<1とする人が相当多いので気を付けましょう!
迷った場合は、7つ場合分けして確かめておきましょうね。
あと、分母がプラスかマイナスかわからない場合は、解説動画のように場合分けするか、分母の値を2乗して(2乗するとプラスだから)不等式全体に掛けると解くことができます。
解説動画
スポンサードリンク
関連記事
-
-
高校数学 解説動画 数学Ⅲ 微分 合成関数の微分法
さて今回は、微分の中でも最重要と言える、合成関数の微分です。 この後に続く、三角関数、指数関数
-
-
高校数学 解説動画 数学Ⅲ 微分 yの2乗をxで微分
ここでは、陰関数の微分に使う 「yの2乗をxで微分する」ことから説明します。  
-
-
数学Ⅲ 複素数平面 ~w=1/zが描く図形~
数学Ⅲ、w=z分の1が描く図形の例題と問題です。 図をかき、式で表して、変形、代入という順番
-
-
数学Ⅲ 複素数平面 ~方程式の表す図形①~
数学Ⅲ、複素数平面の方程式の表す図形①の例題と問題です。 基本は、絶対値2つで垂直二等分線、
-
-
数学Ⅲ 複素数平面 ~1のn乗根~
数学Ⅲ、複素数平面の1のn乗根の例題と問題です。 分母の数字をnとしたときに、n乗してやれば
-
-
数学Ⅲ ~和で表された数列の極限~
数学Ⅲ、和で表された数列の極限の例題と問題です。 基本的にΣ(シグマ)記号を扱っていきます。
-
-
数学Ⅲ 複素数平面 ~n乗根~
数学Ⅲ、複素数平面のn乗根の例題と問題です。 極形式の一般形を使うので、しっかり覚えておきま
-
-
数学Ⅲ ~漸化式の極限③ 誘導型漸化式~
数学Ⅲ、漸化式の極限の例題と問題です。 今回は、誘導型の問題を扱います。 anとbnの式
-
-
高校数学 解説動画 数学Ⅲ 微分 陰関数(円・楕円・双曲線の微分)の微分
さて、yの2乗をxで微分できるようになったら、 陰関数(円、楕円など)が微分できるようになりま
-
-
高校数学 問題検索 数学Ⅲ 微分 「商の微分法」
㊟問題文をクリックしてください! 解説動画のリンクが別枠で開きます(`・ω・´) &nb
- PREV
- 数学Ⅲ ~和で表された数列の極限~
- NEXT
- 数学Ⅲ ~漸化式の極限② 分数型漸化式~